
Meta-Data Based Mediator Generation

T. Critchlow, M. Ganesh, R. Musick
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory (LLNL)
{ critchlow | ganesh | rmusick} @llnl.gov

Abstract

Mediators are a critical component of any data
warehouse; they transform data from source formats to
the warehouse representation while resolving semantic
and syntactic conflicts. The close relationship between
mediators and databases requires a mediator to be
updated whenever an associated schema is modified.
Failure to quickly perform these updates significantly
reduces the reliabil ity of the warehouse because queries
do not have access to the most current data. This may
result in incorrect or misleading responses, and reduce
user confidence in the warehouse. Unfortunately, this
maintenance may be a significant undertaking if a
warehouse integrates several dynamic data sources. This
paper describes a meta-data framework, and associated
software, designed to automate a significant portion of
the mediator generation task and thereby reduce the effort
involved in adapting to schema changes. By allowing the
DBA to concentrate on identifying the modifications at a
high level, instead of reprogramming the mediator,
turnaround time is reduced and warehouse reliability is
improved.

1. Introduction

One of the most formidable problems faced in
accessing data from multiple heterogeneous sources is
resolving schema and data confli cts. In evolving
scientific domains such as genetics, this problem is
compounded by frequent source schema changes. The
DataFoundry project at LLNL is aimed at supporting the
domain scientists who must rely on data from these
dynamic sources. DataFoundry uses a mediated data
warehouse architecture, supported by a carefull y designed
domain-specific ontology. This architecture is able to
rapidly adapt to source schema changes by automaticall y
generating mediators directly from the meta-data defined
in the ontology.

Mediators are critical components of data
warehouses. They are responsible for transferring data

from the source databases1 to the warehouse, and for
resolving all confli cts between the source and target
representations. In traditional data warehouses, mediators
regularly repopulate the warehouse and ensure that the
warehouse data remains up to date. In a warehouse using
partiall y materialized views of distributed data, however,
the mediators are also responsible for dynamicall y
providing access to non-materialized data. This
additional responsibility makes high reliability imperative
since failures directly affect the usabil ity of the
warehouse. Unfortunately, whenever a schema changes,
the associated mediators need to be updated to reflect the
modifications. Until these changes are incorporated,
warehouse usabil ity is compromised; in the best case,
queries return incomplete or slightly out of date data; in
the worst, misleading or incorrect results. It is critical for
the long-term feasibilit y of the warehouse to ensure these
interruptions are as short as possible and do not adversely
affect the perceived reliability. In domains where schema
changes are infrequent this is not a significant concern.
However, in highly dynamic scientific domains frequent
schema modifications are a realit y that must be faced.

To evaluate the effects of different design decisions,
DataFoundry has developed a prototype data warehouse
to aid in genetics research. Genetics is an ideal domain in
which to validate this research for two reasons. First, it is
an evolving scientific domain in which the interactions of
the underlying data are not yet fully understood. As
experimental techniques are developed, and
understanding of the data grows, the database schemata
adapt to reflect this new knowledge. Given the speed of
discovery in this area, the corresponding rates of schema
change are extremely high: based upon previous efforts,
we anticipate one schema modification every 2-4 weeks
once all of the desired sources are integrated. Second, by
successfully providing a warehouse linking several
existing community databases, DataFoundry will provide
an invaluable resource to genetics researchers. While
somewhat independent of computer science research, this
validation ensures the practicality of the approach.

1 We use database to refer to any managed collection of
data including, but not limited to, flat files, relational
databases and object-oriented databases.

In many domains, warehouse maintenance can be
addressed by straightforward techniques. Unfortunately,
these approaches result in an unacceptable amount of
down-time in scientific domains, due to the frequency of
schema modifications. DataFoundry makes extensive use
of a carefull y designed API and ontology to overcome
this problem by automaticall y generating the mediators
directly from the meta-data. Thus, when a schema
changes, the DBA needs to update only the ontology, as
compared to directly modifying the mediator code. This
has the additional benefits of improving code reuse,
providing a consistent API to wrappers, and providing a
useful knowledge base for other applications such as a
high level interface to the warehouse and automatic
schema evolution.

This paper describes the DataFoundry meta-data
representation and how it is used to automatically
generate mediators, thereby reducing the effect of source
changes and improving access to heterogeneous data
sources. A comparison with other research efforts is
provided next in section 2, followed by a brief overview
of the DataFoundry architecture. Section 4 describes the
information represented in the ontology, and Section 5
outlines how it is used to generate the mediators. Finally,
we conclude with a summary of our approach and outline
future research directions.

2. Related efforts

This section highlights a few of the many research
projects in these areas and, where appropriate, compares
them to DataFoundry.

Mediators [21] are software agents which act as
translators for data encapsulating all the routine work of
converting data from one format to another. While, in
theory, these conversions may be arbitrarily complex, in
practice they are often limited to trivial operations.
Mediators may also include the ability to identify the data
sources providing the requested information and
dynamically forward the request to them.

The TSIMMIS [3][7][8] project at Stanford uses
mediators for transformation of data from several diverse
sources. TSIMMIS, like most mediated architectures
(including InfoSleuth [2], DIOM [14] and Disco [20]),
does not provide a global schema and delegates confli ct
resolution to the end user. A serious problem with pure
mediated architectures is data source failure; when a
source is unavailable, incorrect query results may be
returned. Disco [20] attempts to address this problem by
returning the uncompleted portion of the query, which can
be reevaluated later. DataFoundry takes a different
perspective. A global schema is provided on the
assumption that the end user wil l not be familiar enough
with the individual sources to resolve subtle confli cts.
Further, by util izing the warehouse as a local cache, the

effects of an unavailable source can be significantly
reduced.

Ontologies [9][10] store knowledge about real-world
objects and their relationships. They enable high-level
queries to be posed directly against a database, instead of
embedding them in application programs. Cyc [13] is one
of the first, and best known, ontology-based projects. It
defines a large base of common-sense knowledge that
works reasonably well in many environments.
Unfortunately, it lacks the specialized vocabulary
required to be effective in terminology-rich domains.
When ontologies are used in specific domains, such as the
medical field, the challenge is to conceptually link
multiple information resources that use different
terminology [6]. The OBSERVER project [15][16] is
aimed at providing a framework for interaction among
existing ontologies in a global information infrastructure.
This project is aimed at bibliographical information and
uses a thesaurus to resolve terminological differences
among the ontologies. DataFoundry links biological
databases that do not provide significant ontological
information [6], and implements a global ontology as a
facilit ator for information integration from disparate
sources. Other applications of ontologies have been in
linguistics-related fields to help natural language
processing [17]. While DataFoundry intends to explore
using the ontology not only as a resource for generation of
mediators, but also to support the query processor and
guide schema evolution, applications such as NLP are not
currently being considered.

Materialized views [11][19] of source data have long
been used as a mechanism for fast access to data. To
maintain consistency a well -defined view update poli cy,
based on the number and importance of changes to the
source, is required. In data warehouses, partiall y
materiali zed views [1] have been proposed as a method to
reduce data communication between the sources and the
warehouse. DataFoundry will use partiall y materialized
views to improve query response time by caching the
most frequently accessed data. Mechanisms to
dynamically refresh warehouse data when it is not
available or is inconsistent are also included.

3. The DataFoundry architecture

The goal of DataFoundry is to provide integrated
access to multiple, evolving, domain databases through a
consistent interface. To facili tate this, we have chosen an
architecture that combines the advantages of tightly-
coupled federated databases [18] with those of data
warehouses [12]. Federated databases provide a global
schema for the underlying source databases, each of
which retain control and management of their data.
Queries posed against the global schema are translated
into individual queries against the source databases, and

their results are combined before being returned to the
user. This query mechanism is made possible by the
mappings between the information contained in the
source databases, maintained in the global query
processor. Traditional data warehouses, on the other
hand, materialize the summarized data in a local store
which permits fast access to the warehouse data. Data
from different sources is merged together in a batch
operation and stored at the warehouse to provide
immediate responses to queries. This scheme requires
frequent refreshes to the local cache if the source data
changes often.

DataFoundry seeks to support scientists in evolving
research areas where the source data and schemata change
frequently – a goal for which neither a federated database
nor a conventional data warehouse are completely
satisfactory information architectures. To quickly adapt
to the changes in source database schemata DataFoundry
uses a mediated [21] data warehouse architecture
supported by a domain-specific ontology. In this
architecture, only data that is frequently accessed is
materiali zed in the warehouse cache, thus providing fast
access for most queries. The overall dataflow architecture
in the DataFoundry is shown in Figure 1. The main
components in this architecture are the ontology, the
mediator interface to the source databases, the application
user interface, and the data warehouse. Although the
application user interface is not currently implemented,
the remainder of this section describes the architecture as
if it were completed.

To access data from the warehouse, an application
queries the application user interface. The interface
consults the ontology to determine whether the data is

available in the warehouse or if it needs to be dynamicall y
retrieved from the source databases. Access to data
sources is through the mediator interfaces which
transform the data from the source format to the
DataFoundry format and return the results to the
warehouse.

Figure 2 outlines the steps involved in loading the
warehouse: obtaining data from the source, transforming
it to the warehouse format, and entering it into the
warehouse. In practice, these steps are not always
distinct. Often, a single program wil l parse the input file,
and transform the data before storing it in an internal
specification. This internal representation can then be
entered into the warehouse, possibly after further
transformations. Intermingling of wrapper and mediator
is permitted because the mediator API is rarely defined.

A carefully designed API is critical to reduce the
maintenance requirements of the warehouse; it allows the
ontology and warehouse to evolve without affecting the
wrapper. DataFoundry uses a well -defined API, based on
the ontology concepts, to provide a clear separation
between the mediator and wrapper functionalit y.
DataFoundry uses an object-oriented model for the
description of data items internall y, without placing any
restrictions on the data model used for data storage in the
warehouse or in the source databases. The wrappers are
responsible for the translation between the underlying
data model and the global object model.

Mediators in the DataFoundry are expected to
transfer query requests to appropriate data sources and
manage the integration of information returned from the
different sites. In addition, they are also designed to act
as managers for detecting changes in source databases and

Ontology
Application User Interface

Data
Warehouse

Cache

Mediator
Interface 1 Mediator

Interface 2

Warehouse
Mediator

wrapper wrapper
wrapper

wrapper

Source
Database A

Source
Database B

Source
Database C

Figure 1. The DataFoundry architecture

propagating updates in the materialized data to the
warehouse cache.

4. The ontology

The DataFoundry ontology is a collection of
Ontolingua2 [9] classes and instances that define three
types of knowledge: formal definitions of databases,
mappings and methods; concrete instances of these
descriptions; and domain-specific abstractions
representing knowledge about a particular field. The
formal definitions are provided for completeness, and are
not discussed further – the interested reader is directed to
[5]. Instead, we focus on the domain specific abstractions
and three of the concrete instances: the database
descriptions; the mappings between the abstractions and
descriptions; and the transformations between different
abstraction representations. These four concepts provide
all of the meta-data necessary to generate mediators
automaticall y.

The remainder of this section uses the examples
shown in Figure 3 and Figure 4, to describe these
components in detail. First, however, we offer a brief
introduction to the genomic terminology used in these
examples. Proteins are produces by genes to perform a
specific function. They are generally represented as a
linear sequence of amino acids, but are actually complex
3-D structures uniquely determined by these sequences.
There are 20 amino acids, each of which is comprised of a
collection of atoms (primaril y carbon chains) and may be
represented by either a 1-character or 3-character
abbreviation. For a given sequence, each atom has a
unique primary position in 3-D space, although some
atoms may occur in alternative positions with a given

2 Ontolingua represents knowledge in a generalized
format so it can be easil y transferred to multiple
knowledge reasoning systems.

probabilit y (this is called the position’s temperature).
Figure 3 shows a mapping between the atomic positions
in the warehouse and the corresponding abstraction.
Figure 4 presents the methods used to translate between
the different amino acid representations.

4.1. Domain-specific abstractions

Abstractions are the core of the domain specific
knowledge represented by the ontology. Conceptually, an
abstraction encapsulates the different components and
views of a particular domain-specific concept.
Practically, an abstraction is the aggregation of all of a
concept’s associated attributes and representations, as
presented by the participating databases. As such, the
abstractions contain a superset of the information
contained in any individual database.

Each abstraction is an Ontilingua class that inherits,
directly or indirectly, from a distinguished abstraction
class. The abstraction’s attributes are grouped into
characteristics that combine related attributes and
alternative representations of the same attribute. The
genome abstraction shown in Figure 3 presents the
characteristics and attributes associated with the atoms
abstraction. Notice that while the id, flexibility, element
and alternative_position characteristics have only one
attribute associated with them, the position characteristic
has three, which combined represent a position in 3-D
space using Cartesian coordinates. If there were multiple
representations of the same characteristic (e.g. a long
element name) there would also be multiple attributes in
the same characteristic. While this grouping has no affect
on the mediator, it provides a mechanism to document the
conceptual relationship between these attributes.

This example also highlights two interesting features
of the attribute representation. First, it demonstrates that
complex attributes can be defined, encouraging a natural
description of the domain specific concepts. Consider the
alts attribute; instead of being a primitive data type (i.e.

A

P

I

Wrapper

Data Source
Warehouse

Population
Code

Data
Transformations

Input

Class

Output

Class

Mediator

Figure 2. The integration process.

integer, character, string, float, double), it is defined as a
data structure representing the Cartesian coordinates and
flexibilit y of the alternative position, as well as the
probabilit y of the atom being there. It is also possible to
define an attribute to be a pointer to an instance of another
class. Second, each attribute has an arity associated with
it, representing the number of values it can or must have.
The possible values are:

• key: the attribute is single values, required and
unique

• f_key class: the attribute is single valued and
optional, but if it exists, it must also occur in the
key member of class

• 0: the attribute is optional and single valued.
This is the default value if no arity is specified.

• #: the attribute has exactly the number of values
specified by the integer value of # (i.e. the x, y,
and z attributes must contain exactly 1 attribute)

• N: the attribute is optional and multi-valued
• 1_N: the attribute is multi-valued but must have

at least 1 associated value
To ensure that abstractions remain a superset of the

component databases, incorporating a new database
requires updating them in two ways. First, any previously
unknown concepts represented by the new data source
must be incorporated into the class hierarchy. Second,
any new representations or components of an existing
abstraction must be added to its attribute list.

4.2. Database descriptions

Database descriptions are language independent
definitions of the information contained within a single
database. These definitions are used to identify the
translations that must be performed when transferring
data between a specific data source and target. They can
also be used as hints for automatically creating a new
database description after a schema modification, such as
those used by [4].

As the warehouse description in Figure 3 shows, the
ontology representation of a database closely mirrors the
physical layout of a relational database. In this example,
the table (class) name, atom, is followed by a comment
and a li st of associated attributes. There are two
advantages to using this independent representation of the
data. First, the database attributes have the same
functional expressibilit y as the abstraction attributes
described above. As a result, they are able to represent
non-relational data sources, including object-oriented
databases and flat files; a crucial capabil ity when dealing
with a heterogeneous environment. Second, the abilit y to
comment the database descriptions improves warehouse
maintainabil ity by reducing the potential for future
confusion. Class comments may be used to clarify the
interactions with other classes, define or refine the
concept associated with a table, etc.. These comments are
complimented by attribute comments (not shown) that,
while infrequently used for abstraction attributes, provide

atoms
id

dw_key int
position

x float 1
y float 1
z float 1

flexibility
temp float

element
short_nm (string 4)

alternative_pos
alts SET(x float

y float
z float
temp float
prob float) N

atom
“T ype and position of AA atoms in
3-D space”

self int key
model_res int f_key model
x float
y float
z float
temp float
element (string 4)

alts
“ Alternative position of atom”

atom int f_key atom
x float
y float
z float
flexibility float
probability float

Warehouse Description Genome Abstractions

atom X alts => atoms

Mappings

Figure 3. Example of ontology data.

additional meta-data about the attribute’s purpose and
representation.

As databases are integrated into the warehouse, their
descriptions must be entered into the ontology.
Furthermore, as their schemata change the database
descriptions and mappings contained within the ontology
must adapt appropriately. These modifications are
currently made by the DBA, but we plan to investigate
automating this process. Because of the similarity
between the ontology and relational formats, it is possible
to automaticall y generate most of the ontology description
directly from the meta-data associated with most
commercial DBMSs; obviously the DBA must still
expli citl y enter any comments they wish to provide.
However, because most flat file databases do not maintain
any meta-data, the ontology description must be manually
defined.

4.3. Mappings

Mappings identify the correspondence between
database descriptions and abstractions at both the class
and attribute levels. In particular, several source classes
are mapped onto a single target class to completely define
an instance of the target class. When the participating
database is a data source, its classes comprise the possible
source classes and the abstraction classes are the possible
targets. The reverse mapping is used for the warehouse.
Because abstractions are an aggregation of the individual
databases, there is always a direct mapping between
database and abstraction attributes. Due to
representational differences, however, an abstraction may
be split across several database classes and a single
database class may be related to several abstractions.

This ensures that we are able to define complete instances
of the target class.

Figure 3 demonstrates how the warehouse atom and
alts tables are mapped to the atoms abstraction. By
default, the alts and atom classes are joined on the key /
f_key relationships identified in the database description.
Because alts is an optional attribute of atoms, an outer
join is used to associate the alternative positions with the
appropriate atom; if it was required, a natural join would
have been used instead. Ambiguity about which
attributes should participate in the join may arise if there
are multiple foreign key references in a single table. This
ambiguity is resolved by explicitl y identifying the join
conditions in the mapping definition.

4.4. Transformations and other user extensions

Transformations describe which attributes contain the
same data, but in different formats, and identify the
methods that can be used to translate between them. The
ontology does not define these methods explicitl y, instead
it records just their names and locations. DataFoundry
uses a naming convention to identify the attributes
manipulated with a particular method. An alternative,
more verbose, approach would be to explicitl y associate
the participating attributes with each method. In either
case, these methods are restricted to operating only on
class member variables and, as such, do not require any
parameters. To provide the maximum flexibil ity,
DataFoundry allows two types of other extensions to be
associated with an abstraction, and thus shared with all its
instances: class methods and class data.

Figure 4 presents the extensions for the amino_acid
abstraction. A simple naming convention of
source_attribute _to_ target_attribute permits the

(define-instance genome-transformations (abstraction-enhancement)
 :def (= genome-transformations

 '("/home/critchlo/data-warehouse/ontology/lib/genome.lib"
(amino_acid

 (translation-methods (full_to_one_char)
(full_to_three_char)
(one_char_to_full)
(three_char_to_full))

 (class-methods (three_char_to_one_char
 ("one_char" character)))
 (class-data ((name_conversion_table

(("one_char" character)
 ("three_char" (string 3))
 ("full_name" (string 40))) 28)

 ({ { "A", "ALA", "Alanine"} , { "R", "ARG", "Arginine"} ,
 ("N", "ASN", "Asparagine"} , { "D", "ASP", "Aspartic acid"} ,

 …}))….)))

Figure 4. Transformation definitions.

attributes associated with each method to be easil y
identified. It is important to note that a sequence of
method invocations may be required to obtain the desired
representation. For example, the conversion from
three_char to one_char takes two steps; first converting
from three_char to full, then from full to one_char. The
class method three_char_to_one_char returns the
corresponding one_char value for a given three_char
value; however, since it can be invoked without an
associated amino_acid instance, it may not modify the
instance attributes as the sequence of transformation
method invocations would. This method would be used
in another class that requires the ability to convert
between representations, but does not require an instance
of this class. For example, the sequence class may need
to convert a string representing an amino acid li st in 1-
character format to an equivalent string using 3-character
format. Creating amino acid instances for each element
of the sequence would be useful, so this method would be
useful. Class data is useful for providing information
such as a translation table that does not vary between
instances of the class.

There are two benefits to identifying these methods
in the ontology. First, and most obvious, it provides the
ontology with the final piece of knowledge required to
generate the mediators. However, a subtler benefit is the
combination of the transformation methods into a single
library. By explicitl y identifying these methods, and
defining them in a single location, code re-use is
encouraged and maintenance costs reduced.

5. Automatic mediator generation

Once the ontology has been defined, an ontology
engine (OE) is used to generate the C++ classes and
methods that comprise the mediator. Figure 5 outlines
how the ontology concepts discussed in the previous
section relate to various components of the mediator. For
example, the atoms abstraction is mapped into a class in
the translation library that includes all of its attributes,
methods to access these attributes, and any associated
transformation methods or other user-defined extensions.

As shown, the mediator functionality is decomposed
into a translation library and a set of mediator classes.

Ontology

Abstractions

Transformation
Descriptions

Data
Mappings

Database
Description

Mediator

User-defined

methods

Data Access
Methods

Translation Code

Method
Description

Data
Definition

API

Translation Library

Transformation
Calls

Population
Code

SQL

Interface

Mediator Classes

Mediator
Interface

Figure 5. Using the ontology to generate the mediator classes.

The translation library represents the classes and methods
associated with the ontology abstractions, while the
mediator classes are responsible for performing the data
transformations. The API available to the wrapper is a
combination of the mediator class and translation library
APIs. The process of obtaining these components from
the ontology is relatively straightforward, and is therefore
only discussed briefly below.

The translation library encapsulates the class
definitions and methods associated with the domain-
specific abstractions. The OE defines a distinguished
abstraction class, and one class for each ontology
abstraction. The inheritance hierarchy is the same as the
ontology abstraction hierarchy, except that the base
classes inherit from abstraction. This provides all classes
with a minimal amount of functionality, including access
to both the source and target databases. The data
members associated with a class correspond to the
abstraction attributes; static data members are used to
represent the class-data extensions. Abstractions used as
multi-valued attributes have an additional data member,
next_ptr, which is used to create a linked-li st. Classes are
also defined for complex data types, which are named
based on the corresponding attribute name. For each
attribute, the OE defines two data access methods: one to
read it, the other to write it. The appropriate user defined
extensions are also included in the class API as static
methods.

Mediator class generation is only slightly more
diff icult than generating the translation library. For each
defined source – warehouse pair, a mediator class is
generated to perform the data transformations and enter
the data into the warehouse. Different classes are used
because the transformations vary depending on the source
format, and using a pure data-driven approach to
dynamically identify the appropriate transformations
would be too slow. The alternative of defining multiple
methods for a single class was deemed aesthetically
unappealing, although it is a functionally equivalent
approach. For each class, a single method takes the top-
level abstractions, converts them to the warehouse format,
and transfers the data to the warehouse.
The set of required transformations is obtained by
comparing the attributes provided by the data source to
the ones required by the warehouse. If a warehouse
attribute is not directly available from the source, the OE
searches for a sequence of transformation methods that
will generate the desired attribute. If there is no such
sequence, and the attribute is not required, its value is set
to NULL. If the attribute is required an error is generated,
notifying the DBA that another transformation method is
required. Because of their complexity, the OE will not
attempt to invoke any of the class methods. Once all the
warehouse attributes are defined, the OE uses its SQL
interface to generate commands to perform the transfer.

As databases evolve and additional data sources are
integrated, new database descriptions and mappings are
defined. These may, in turn, require adding new
abstractions, extending the attribute set associated with an
existing abstraction, and defining new translation
methods. Incorporating a new data source requires the
DBA to describe it, map the source attributes to
corresponding abstraction attributes, ensure that all
applicable transformation methods are defined, and create
the wrapper. The OE creates the new mediator class, and
expands the API as needed. Once a database has been
integrated, adapting to schema changes often requires
only modifying the wrapper to read the new format.
Significant changes in the data representation may require
the ontology to be modified and a new mediator created.

6. Conclusion

DataFoundry is an ongoing research project at LLNL
investigating warehousing techniques in dynamic
scientific domains. In these domains, the high rate of
schemata change makes it impractical to maintain a
warehouse integrating several autonomous data sources
using traditional methods. Ensuring the consistency and
availabilit y of a data warehouse requires the ability to
quickly modify mediators to reflect these schema
modifications. This paper presents DataFoundry’s meta-
data based approach to mediator generation, which is
designed to significantly reduce the time and effort
necessary to manage these changes. We expect to have a
functional prototype of the OE in place shortly, after
which we will begin exploring other uses for the
ontology. We anticipate pursuing research in the areas of
automatic schema evolution, automatic schema
integration, and relational wrapper generation. While it is
li kely that the content of the ontology will expand as these
new directions are addressed, we believe the current
concepts will remain relatively unchanged.

References

[1] L. Baekgaard, and N. Roussopoulos. Eff icient
Refreshment of Data Warehouse Views. UMIACS-
TR-96-33, University of Maryland. May, 1996.

[2] R.J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki,
J. Fowler, A. Helal, V. Kashyp, T. Ksiezyk, G.
Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R.
Shea, C. Unnikrishnan, A. Unruh, and D. Woelk.
InforSleuth: Agent-Based Semantic Integration of
Information in Open and Dynamic Environments. In
Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data.
May 1997.

[3] S. Chawathe, H. Garcia-Molina, J. Hammer, K.
Ireland, Y. Papokonstatinou, J. Ullman, J. Widom.
The TSIMMIS Project: Integration of
Heterogeneous Information Sources. In Proceedings
of the ISPJ Conference. 1994

[4] T. Critchlow. Schema Coercion: Using Database
Meta-Information to Facil itate Data Transfer. Ph.D.
Dissertation. University of Utah Technical Report.
June. 1997.

[5] T. Critchlow, M. Ganesh, R. Musick. Automatic
Generation of Warehouse Mediators Using an
Ontology Engine. In Proceedings of the 5th

International Workshop on Knowledge
Representation meets Databases (KRDB’98). May
1998.

[6] N. Fridman and C. D. Hafner. Ontological
Foundations for Biology Knowledge Models. In 4th

Int’ l Conference On Intelligent Systems for
Molecular Biology, pp 78-87, 1996.

[7] H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and Jennifer Widom.
Integrating and Accessing Heterogeneous
Information Sources in TSIMMIS. In Proceedings
of the AAAI Symposium on Information Gathering,
pp. 61-64, Stanford, California, March 1995.

[8] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, V. Vassalos, and
J. Widom. The TSIMMIS Approach to Mediation:
Data Models and Languages. In Journal of
Intelligent Information Systems, 1997.

[9] T. Gruber. Ontolingua: A Mechanism to Support
Portable Ontologies. Stanford. Knowledge Systems
Laboratory. Tech Report KSL-91-66. November
1992.

[10] T. Gruber. Towards Principles for Design of
Ontologies Used for Knowledge Sharing. Stanford
Knowledge Systems Laboratory. Tech Report KSL-
93-04. 1993.

[11] A. Gupta and I. S. Mumick. Maintenance of
Materialized Views: Problems Techniques, and
Applications. In Data Engineering Bulletin, June,
1995.

[12] W. H. Inmon. Building the Data Warehouse. Wiley-
QED, 1992.

[13] D. B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Addison-Wesley,
Reading MA, 1990.

[14] L. Liu, C. Pu Y. Lee. An Adaptive Approach to
Query Mediation across Heterogeneous Information
Sources. In Proceedings of 1st Int’ l Conference on
Cooperative Information Systems (CoopIS ’96),
Brussels, Belgium, June 1996.

[15] E. Mena, V. Kashyap, A. Sheth, and A.
Illarramendi. OBSERVER: An Approach for Query
Processing in Global Information Systems based on
Interoperation across Pre-existing Ontologies. In
Proceedings of 1st Int’ l Conference on Cooperative
Information Systems (CoopIS ’96), Brussels,
Belgium, June 1996.

[16] E. Mena, V. Kashyap, A. Sheth, and A.
Illarramendi. Domain Specific Ontologies for
Semantic Information Brokering on the Global
Information Infrastructure. to appear In Proceedings
of the First International Conference on Formal
Ontologies in Information Systems. Trento, Italy.
June 1998

[17] N. F. Noy and C. D. Hafner. The State of Art in
Ontology Design: A Survey and Comparative
Review. AI Magazine, Fall 1997, pp 53-74.

[18] A. P. Sheth and J. A. Larson. Federated database
systems for managing distributed heterogeneous and
autonomous databases. ACM Computing Surveys,
22(3):183-236, September 1990.

[19] M. Stonebraker, A. Jhingran, J. Goh, and S.
Potamianos. On rules, Procedures, Caching and
Views in Data Base Systems. In Proceedings of
ACM-SIGMOD, Atlantic City, NJ, May 1990.

[20] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
Heterogeneous Databases and the Design of Disco.
In Proceedings of the International Conference on
Distributed Computer Systems. 1996.

[21] G. Weiderhold. Mediators in the architecture of
future information systems. IEEE Computer, 25:38-
49, 1992

Work performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-ENG-48

